3.2.65 \(\int (a+b \sin (c+d x))^3 \tan ^4(c+d x) \, dx\) [165]

Optimal. Leaf size=220 \[ a^3 x+\frac {15}{2} a b^2 x-\frac {3 a^2 b \cos (c+d x)}{d}-\frac {3 b^3 \cos (c+d x)}{d}+\frac {b^3 \cos ^3(c+d x)}{3 d}-\frac {6 a^2 b \sec (c+d x)}{d}-\frac {3 b^3 \sec (c+d x)}{d}+\frac {a^2 b \sec ^3(c+d x)}{d}+\frac {b^3 \sec ^3(c+d x)}{3 d}-\frac {a^3 \tan (c+d x)}{d}-\frac {15 a b^2 \tan (c+d x)}{2 d}+\frac {a^3 \tan ^3(c+d x)}{3 d}+\frac {5 a b^2 \tan ^3(c+d x)}{2 d}-\frac {3 a b^2 \sin ^2(c+d x) \tan ^3(c+d x)}{2 d} \]

[Out]

a^3*x+15/2*a*b^2*x-3*a^2*b*cos(d*x+c)/d-3*b^3*cos(d*x+c)/d+1/3*b^3*cos(d*x+c)^3/d-6*a^2*b*sec(d*x+c)/d-3*b^3*s
ec(d*x+c)/d+a^2*b*sec(d*x+c)^3/d+1/3*b^3*sec(d*x+c)^3/d-a^3*tan(d*x+c)/d-15/2*a*b^2*tan(d*x+c)/d+1/3*a^3*tan(d
*x+c)^3/d+5/2*a*b^2*tan(d*x+c)^3/d-3/2*a*b^2*sin(d*x+c)^2*tan(d*x+c)^3/d

________________________________________________________________________________________

Rubi [A]
time = 0.17, antiderivative size = 220, normalized size of antiderivative = 1.00, number of steps used = 16, number of rules used = 9, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.429, Rules used = {2801, 3554, 8, 2670, 276, 2671, 294, 308, 209} \begin {gather*} \frac {a^3 \tan ^3(c+d x)}{3 d}-\frac {a^3 \tan (c+d x)}{d}+a^3 x-\frac {3 a^2 b \cos (c+d x)}{d}+\frac {a^2 b \sec ^3(c+d x)}{d}-\frac {6 a^2 b \sec (c+d x)}{d}+\frac {5 a b^2 \tan ^3(c+d x)}{2 d}-\frac {15 a b^2 \tan (c+d x)}{2 d}-\frac {3 a b^2 \sin ^2(c+d x) \tan ^3(c+d x)}{2 d}+\frac {15}{2} a b^2 x+\frac {b^3 \cos ^3(c+d x)}{3 d}-\frac {3 b^3 \cos (c+d x)}{d}+\frac {b^3 \sec ^3(c+d x)}{3 d}-\frac {3 b^3 \sec (c+d x)}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*Sin[c + d*x])^3*Tan[c + d*x]^4,x]

[Out]

a^3*x + (15*a*b^2*x)/2 - (3*a^2*b*Cos[c + d*x])/d - (3*b^3*Cos[c + d*x])/d + (b^3*Cos[c + d*x]^3)/(3*d) - (6*a
^2*b*Sec[c + d*x])/d - (3*b^3*Sec[c + d*x])/d + (a^2*b*Sec[c + d*x]^3)/d + (b^3*Sec[c + d*x]^3)/(3*d) - (a^3*T
an[c + d*x])/d - (15*a*b^2*Tan[c + d*x])/(2*d) + (a^3*Tan[c + d*x]^3)/(3*d) + (5*a*b^2*Tan[c + d*x]^3)/(2*d) -
 (3*a*b^2*Sin[c + d*x]^2*Tan[c + d*x]^3)/(2*d)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 276

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*(a + b*x^n)^p,
 x], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0]

Rule 294

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^
n)^(p + 1)/(b*n*(p + 1))), x] - Dist[c^n*((m - n + 1)/(b*n*(p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x
], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  !ILtQ[(m + n*(p + 1) + 1)/n, 0]
&& IntBinomialQ[a, b, c, n, m, p, x]

Rule 308

Int[(x_)^(m_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Int[PolynomialDivide[x^m, a + b*x^n, x], x] /; FreeQ[{a,
b}, x] && IGtQ[m, 0] && IGtQ[n, 0] && GtQ[m, 2*n - 1]

Rule 2670

Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*tan[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] :> Dist[-f^(-1), Subst[Int[(1 - x^2
)^((m + n - 1)/2)/x^n, x], x, Cos[e + f*x]], x] /; FreeQ[{e, f}, x] && IntegersQ[m, n, (m + n - 1)/2]

Rule 2671

Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> With[{ff = FreeFactors[Ta
n[e + f*x], x]}, Dist[b*(ff/f), Subst[Int[(ff*x)^(m + n)/(b^2 + ff^2*x^2)^(m/2 + 1), x], x, b*(Tan[e + f*x]/ff
)], x]] /; FreeQ[{b, e, f, n}, x] && IntegerQ[m/2]

Rule 2801

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((g_.)*tan[(e_.) + (f_.)*(x_)])^(p_.), x_Symbol] :> Int[Expan
dIntegrand[(g*Tan[e + f*x])^p, (a + b*Sin[e + f*x])^m, x], x] /; FreeQ[{a, b, e, f, g, p}, x] && NeQ[a^2 - b^2
, 0] && IGtQ[m, 0]

Rule 3554

Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b*((b*Tan[c + d*x])^(n - 1)/(d*(n - 1))), x] - Dis
t[b^2, Int[(b*Tan[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1]

Rubi steps

\begin {align*} \int (a+b \sin (c+d x))^3 \tan ^4(c+d x) \, dx &=\int \left (a^3 \tan ^4(c+d x)+3 a^2 b \sin (c+d x) \tan ^4(c+d x)+3 a b^2 \sin ^2(c+d x) \tan ^4(c+d x)+b^3 \sin ^3(c+d x) \tan ^4(c+d x)\right ) \, dx\\ &=a^3 \int \tan ^4(c+d x) \, dx+\left (3 a^2 b\right ) \int \sin (c+d x) \tan ^4(c+d x) \, dx+\left (3 a b^2\right ) \int \sin ^2(c+d x) \tan ^4(c+d x) \, dx+b^3 \int \sin ^3(c+d x) \tan ^4(c+d x) \, dx\\ &=\frac {a^3 \tan ^3(c+d x)}{3 d}-a^3 \int \tan ^2(c+d x) \, dx-\frac {\left (3 a^2 b\right ) \text {Subst}\left (\int \frac {\left (1-x^2\right )^2}{x^4} \, dx,x,\cos (c+d x)\right )}{d}+\frac {\left (3 a b^2\right ) \text {Subst}\left (\int \frac {x^6}{\left (1+x^2\right )^2} \, dx,x,\tan (c+d x)\right )}{d}-\frac {b^3 \text {Subst}\left (\int \frac {\left (1-x^2\right )^3}{x^4} \, dx,x,\cos (c+d x)\right )}{d}\\ &=-\frac {a^3 \tan (c+d x)}{d}+\frac {a^3 \tan ^3(c+d x)}{3 d}-\frac {3 a b^2 \sin ^2(c+d x) \tan ^3(c+d x)}{2 d}+a^3 \int 1 \, dx-\frac {\left (3 a^2 b\right ) \text {Subst}\left (\int \left (1+\frac {1}{x^4}-\frac {2}{x^2}\right ) \, dx,x,\cos (c+d x)\right )}{d}+\frac {\left (15 a b^2\right ) \text {Subst}\left (\int \frac {x^4}{1+x^2} \, dx,x,\tan (c+d x)\right )}{2 d}-\frac {b^3 \text {Subst}\left (\int \left (3+\frac {1}{x^4}-\frac {3}{x^2}-x^2\right ) \, dx,x,\cos (c+d x)\right )}{d}\\ &=a^3 x-\frac {3 a^2 b \cos (c+d x)}{d}-\frac {3 b^3 \cos (c+d x)}{d}+\frac {b^3 \cos ^3(c+d x)}{3 d}-\frac {6 a^2 b \sec (c+d x)}{d}-\frac {3 b^3 \sec (c+d x)}{d}+\frac {a^2 b \sec ^3(c+d x)}{d}+\frac {b^3 \sec ^3(c+d x)}{3 d}-\frac {a^3 \tan (c+d x)}{d}+\frac {a^3 \tan ^3(c+d x)}{3 d}-\frac {3 a b^2 \sin ^2(c+d x) \tan ^3(c+d x)}{2 d}+\frac {\left (15 a b^2\right ) \text {Subst}\left (\int \left (-1+x^2+\frac {1}{1+x^2}\right ) \, dx,x,\tan (c+d x)\right )}{2 d}\\ &=a^3 x-\frac {3 a^2 b \cos (c+d x)}{d}-\frac {3 b^3 \cos (c+d x)}{d}+\frac {b^3 \cos ^3(c+d x)}{3 d}-\frac {6 a^2 b \sec (c+d x)}{d}-\frac {3 b^3 \sec (c+d x)}{d}+\frac {a^2 b \sec ^3(c+d x)}{d}+\frac {b^3 \sec ^3(c+d x)}{3 d}-\frac {a^3 \tan (c+d x)}{d}-\frac {15 a b^2 \tan (c+d x)}{2 d}+\frac {a^3 \tan ^3(c+d x)}{3 d}+\frac {5 a b^2 \tan ^3(c+d x)}{2 d}-\frac {3 a b^2 \sin ^2(c+d x) \tan ^3(c+d x)}{2 d}+\frac {\left (15 a b^2\right ) \text {Subst}\left (\int \frac {1}{1+x^2} \, dx,x,\tan (c+d x)\right )}{2 d}\\ &=a^3 x+\frac {15}{2} a b^2 x-\frac {3 a^2 b \cos (c+d x)}{d}-\frac {3 b^3 \cos (c+d x)}{d}+\frac {b^3 \cos ^3(c+d x)}{3 d}-\frac {6 a^2 b \sec (c+d x)}{d}-\frac {3 b^3 \sec (c+d x)}{d}+\frac {a^2 b \sec ^3(c+d x)}{d}+\frac {b^3 \sec ^3(c+d x)}{3 d}-\frac {a^3 \tan (c+d x)}{d}-\frac {15 a b^2 \tan (c+d x)}{2 d}+\frac {a^3 \tan ^3(c+d x)}{3 d}+\frac {5 a b^2 \tan ^3(c+d x)}{2 d}-\frac {3 a b^2 \sin ^2(c+d x) \tan ^3(c+d x)}{2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.46, size = 226, normalized size = 1.03 \begin {gather*} \frac {\sec ^3(c+d x) \left (-300 a^2 b-210 b^3+36 a \left (2 a^2+15 b^2\right ) (c+d x) \cos (c+d x)-3 \left (144 a^2 b+91 b^3\right ) \cos (2 (c+d x))+24 a^3 c \cos (3 (c+d x))+180 a b^2 c \cos (3 (c+d x))+24 a^3 d x \cos (3 (c+d x))+180 a b^2 d x \cos (3 (c+d x))-36 a^2 b \cos (4 (c+d x))-30 b^3 \cos (4 (c+d x))+b^3 \cos (6 (c+d x))-90 a b^2 \sin (c+d x)-32 a^3 \sin (3 (c+d x))-195 a b^2 \sin (3 (c+d x))-9 a b^2 \sin (5 (c+d x))\right )}{96 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Sin[c + d*x])^3*Tan[c + d*x]^4,x]

[Out]

(Sec[c + d*x]^3*(-300*a^2*b - 210*b^3 + 36*a*(2*a^2 + 15*b^2)*(c + d*x)*Cos[c + d*x] - 3*(144*a^2*b + 91*b^3)*
Cos[2*(c + d*x)] + 24*a^3*c*Cos[3*(c + d*x)] + 180*a*b^2*c*Cos[3*(c + d*x)] + 24*a^3*d*x*Cos[3*(c + d*x)] + 18
0*a*b^2*d*x*Cos[3*(c + d*x)] - 36*a^2*b*Cos[4*(c + d*x)] - 30*b^3*Cos[4*(c + d*x)] + b^3*Cos[6*(c + d*x)] - 90
*a*b^2*Sin[c + d*x] - 32*a^3*Sin[3*(c + d*x)] - 195*a*b^2*Sin[3*(c + d*x)] - 9*a*b^2*Sin[5*(c + d*x)]))/(96*d)

________________________________________________________________________________________

Maple [A]
time = 0.24, size = 268, normalized size = 1.22

method result size
derivativedivides \(\frac {a^{3} \left (\frac {\left (\tan ^{3}\left (d x +c \right )\right )}{3}-\tan \left (d x +c \right )+d x +c \right )+3 a^{2} b \left (\frac {\sin ^{6}\left (d x +c \right )}{3 \cos \left (d x +c \right )^{3}}-\frac {\sin ^{6}\left (d x +c \right )}{\cos \left (d x +c \right )}-\left (\frac {8}{3}+\sin ^{4}\left (d x +c \right )+\frac {4 \left (\sin ^{2}\left (d x +c \right )\right )}{3}\right ) \cos \left (d x +c \right )\right )+3 a \,b^{2} \left (\frac {\sin ^{7}\left (d x +c \right )}{3 \cos \left (d x +c \right )^{3}}-\frac {4 \left (\sin ^{7}\left (d x +c \right )\right )}{3 \cos \left (d x +c \right )}-\frac {4 \left (\sin ^{5}\left (d x +c \right )+\frac {5 \left (\sin ^{3}\left (d x +c \right )\right )}{4}+\frac {15 \sin \left (d x +c \right )}{8}\right ) \cos \left (d x +c \right )}{3}+\frac {5 d x}{2}+\frac {5 c}{2}\right )+b^{3} \left (\frac {\sin ^{8}\left (d x +c \right )}{3 \cos \left (d x +c \right )^{3}}-\frac {5 \left (\sin ^{8}\left (d x +c \right )\right )}{3 \cos \left (d x +c \right )}-\frac {5 \left (\frac {16}{5}+\sin ^{6}\left (d x +c \right )+\frac {6 \left (\sin ^{4}\left (d x +c \right )\right )}{5}+\frac {8 \left (\sin ^{2}\left (d x +c \right )\right )}{5}\right ) \cos \left (d x +c \right )}{3}\right )}{d}\) \(268\)
default \(\frac {a^{3} \left (\frac {\left (\tan ^{3}\left (d x +c \right )\right )}{3}-\tan \left (d x +c \right )+d x +c \right )+3 a^{2} b \left (\frac {\sin ^{6}\left (d x +c \right )}{3 \cos \left (d x +c \right )^{3}}-\frac {\sin ^{6}\left (d x +c \right )}{\cos \left (d x +c \right )}-\left (\frac {8}{3}+\sin ^{4}\left (d x +c \right )+\frac {4 \left (\sin ^{2}\left (d x +c \right )\right )}{3}\right ) \cos \left (d x +c \right )\right )+3 a \,b^{2} \left (\frac {\sin ^{7}\left (d x +c \right )}{3 \cos \left (d x +c \right )^{3}}-\frac {4 \left (\sin ^{7}\left (d x +c \right )\right )}{3 \cos \left (d x +c \right )}-\frac {4 \left (\sin ^{5}\left (d x +c \right )+\frac {5 \left (\sin ^{3}\left (d x +c \right )\right )}{4}+\frac {15 \sin \left (d x +c \right )}{8}\right ) \cos \left (d x +c \right )}{3}+\frac {5 d x}{2}+\frac {5 c}{2}\right )+b^{3} \left (\frac {\sin ^{8}\left (d x +c \right )}{3 \cos \left (d x +c \right )^{3}}-\frac {5 \left (\sin ^{8}\left (d x +c \right )\right )}{3 \cos \left (d x +c \right )}-\frac {5 \left (\frac {16}{5}+\sin ^{6}\left (d x +c \right )+\frac {6 \left (\sin ^{4}\left (d x +c \right )\right )}{5}+\frac {8 \left (\sin ^{2}\left (d x +c \right )\right )}{5}\right ) \cos \left (d x +c \right )}{3}\right )}{d}\) \(268\)
risch \(a^{3} x +\frac {15 a \,b^{2} x}{2}+\frac {b^{3} {\mathrm e}^{3 i \left (d x +c \right )}}{24 d}+\frac {3 i a \,b^{2} {\mathrm e}^{2 i \left (d x +c \right )}}{8 d}-\frac {3 b \,{\mathrm e}^{i \left (d x +c \right )} a^{2}}{2 d}-\frac {11 b^{3} {\mathrm e}^{i \left (d x +c \right )}}{8 d}-\frac {3 b \,{\mathrm e}^{-i \left (d x +c \right )} a^{2}}{2 d}-\frac {11 b^{3} {\mathrm e}^{-i \left (d x +c \right )}}{8 d}-\frac {3 i a \,b^{2} {\mathrm e}^{-2 i \left (d x +c \right )}}{8 d}+\frac {b^{3} {\mathrm e}^{-3 i \left (d x +c \right )}}{24 d}-\frac {2 \left (6 i a^{3} {\mathrm e}^{4 i \left (d x +c \right )}+27 i a \,b^{2} {\mathrm e}^{4 i \left (d x +c \right )}+18 a^{2} b \,{\mathrm e}^{5 i \left (d x +c \right )}+9 b^{3} {\mathrm e}^{5 i \left (d x +c \right )}+6 i a^{3} {\mathrm e}^{2 i \left (d x +c \right )}+36 i a \,b^{2} {\mathrm e}^{2 i \left (d x +c \right )}+24 a^{2} b \,{\mathrm e}^{3 i \left (d x +c \right )}+14 b^{3} {\mathrm e}^{3 i \left (d x +c \right )}+4 i a^{3}+21 i a \,b^{2}+18 a^{2} b \,{\mathrm e}^{i \left (d x +c \right )}+9 b^{3} {\mathrm e}^{i \left (d x +c \right )}\right )}{3 d \left (1+{\mathrm e}^{2 i \left (d x +c \right )}\right )^{3}}\) \(337\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*sin(d*x+c))^3*tan(d*x+c)^4,x,method=_RETURNVERBOSE)

[Out]

1/d*(a^3*(1/3*tan(d*x+c)^3-tan(d*x+c)+d*x+c)+3*a^2*b*(1/3*sin(d*x+c)^6/cos(d*x+c)^3-sin(d*x+c)^6/cos(d*x+c)-(8
/3+sin(d*x+c)^4+4/3*sin(d*x+c)^2)*cos(d*x+c))+3*a*b^2*(1/3*sin(d*x+c)^7/cos(d*x+c)^3-4/3*sin(d*x+c)^7/cos(d*x+
c)-4/3*(sin(d*x+c)^5+5/4*sin(d*x+c)^3+15/8*sin(d*x+c))*cos(d*x+c)+5/2*d*x+5/2*c)+b^3*(1/3*sin(d*x+c)^8/cos(d*x
+c)^3-5/3*sin(d*x+c)^8/cos(d*x+c)-5/3*(16/5+sin(d*x+c)^6+6/5*sin(d*x+c)^4+8/5*sin(d*x+c)^2)*cos(d*x+c)))

________________________________________________________________________________________

Maxima [A]
time = 0.64, size = 167, normalized size = 0.76 \begin {gather*} \frac {2 \, {\left (\tan \left (d x + c\right )^{3} + 3 \, d x + 3 \, c - 3 \, \tan \left (d x + c\right )\right )} a^{3} + 3 \, {\left (2 \, \tan \left (d x + c\right )^{3} + 15 \, d x + 15 \, c - \frac {3 \, \tan \left (d x + c\right )}{\tan \left (d x + c\right )^{2} + 1} - 12 \, \tan \left (d x + c\right )\right )} a b^{2} + 2 \, {\left (\cos \left (d x + c\right )^{3} - \frac {9 \, \cos \left (d x + c\right )^{2} - 1}{\cos \left (d x + c\right )^{3}} - 9 \, \cos \left (d x + c\right )\right )} b^{3} - 6 \, a^{2} b {\left (\frac {6 \, \cos \left (d x + c\right )^{2} - 1}{\cos \left (d x + c\right )^{3}} + 3 \, \cos \left (d x + c\right )\right )}}{6 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sin(d*x+c))^3*tan(d*x+c)^4,x, algorithm="maxima")

[Out]

1/6*(2*(tan(d*x + c)^3 + 3*d*x + 3*c - 3*tan(d*x + c))*a^3 + 3*(2*tan(d*x + c)^3 + 15*d*x + 15*c - 3*tan(d*x +
 c)/(tan(d*x + c)^2 + 1) - 12*tan(d*x + c))*a*b^2 + 2*(cos(d*x + c)^3 - (9*cos(d*x + c)^2 - 1)/cos(d*x + c)^3
- 9*cos(d*x + c))*b^3 - 6*a^2*b*((6*cos(d*x + c)^2 - 1)/cos(d*x + c)^3 + 3*cos(d*x + c)))/d

________________________________________________________________________________________

Fricas [A]
time = 0.34, size = 157, normalized size = 0.71 \begin {gather*} \frac {2 \, b^{3} \cos \left (d x + c\right )^{6} + 3 \, {\left (2 \, a^{3} + 15 \, a b^{2}\right )} d x \cos \left (d x + c\right )^{3} - 18 \, {\left (a^{2} b + b^{3}\right )} \cos \left (d x + c\right )^{4} + 6 \, a^{2} b + 2 \, b^{3} - 18 \, {\left (2 \, a^{2} b + b^{3}\right )} \cos \left (d x + c\right )^{2} - {\left (9 \, a b^{2} \cos \left (d x + c\right )^{4} - 2 \, a^{3} - 6 \, a b^{2} + 2 \, {\left (4 \, a^{3} + 21 \, a b^{2}\right )} \cos \left (d x + c\right )^{2}\right )} \sin \left (d x + c\right )}{6 \, d \cos \left (d x + c\right )^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sin(d*x+c))^3*tan(d*x+c)^4,x, algorithm="fricas")

[Out]

1/6*(2*b^3*cos(d*x + c)^6 + 3*(2*a^3 + 15*a*b^2)*d*x*cos(d*x + c)^3 - 18*(a^2*b + b^3)*cos(d*x + c)^4 + 6*a^2*
b + 2*b^3 - 18*(2*a^2*b + b^3)*cos(d*x + c)^2 - (9*a*b^2*cos(d*x + c)^4 - 2*a^3 - 6*a*b^2 + 2*(4*a^3 + 21*a*b^
2)*cos(d*x + c)^2)*sin(d*x + c))/(d*cos(d*x + c)^3)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \left (a + b \sin {\left (c + d x \right )}\right )^{3} \tan ^{4}{\left (c + d x \right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sin(d*x+c))**3*tan(d*x+c)**4,x)

[Out]

Integral((a + b*sin(c + d*x))**3*tan(c + d*x)**4, x)

________________________________________________________________________________________

Giac [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sin(d*x+c))^3*tan(d*x+c)^4,x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

Mupad [B]
time = 9.20, size = 297, normalized size = 1.35 \begin {gather*} \frac {a\,\mathrm {atan}\left (\frac {a\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (2\,a^2+15\,b^2\right )}{2\,a^3+15\,a\,b^2}\right )\,\left (2\,a^2+15\,b^2\right )}{d}-\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3\,\left (\frac {2\,a^3}{3}+5\,a\,b^2\right )-16\,a^2\,b-\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (2\,a^3+15\,a\,b^2\right )+{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^9\,\left (\frac {2\,a^3}{3}+5\,a\,b^2\right )-{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{11}\,\left (2\,a^3+15\,a\,b^2\right )+{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5\,\left (12\,a^3+42\,a\,b^2\right )+{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7\,\left (12\,a^3+42\,a\,b^2\right )+{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4\,\left (48\,a^2\,b+32\,b^3\right )-\frac {32\,b^3}{3}+32\,a^2\,b\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{12}-3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8+3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4-1\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(c + d*x)^4*(a + b*sin(c + d*x))^3,x)

[Out]

(a*atan((a*tan(c/2 + (d*x)/2)*(2*a^2 + 15*b^2))/(15*a*b^2 + 2*a^3))*(2*a^2 + 15*b^2))/d - (tan(c/2 + (d*x)/2)^
3*(5*a*b^2 + (2*a^3)/3) - 16*a^2*b - tan(c/2 + (d*x)/2)*(15*a*b^2 + 2*a^3) + tan(c/2 + (d*x)/2)^9*(5*a*b^2 + (
2*a^3)/3) - tan(c/2 + (d*x)/2)^11*(15*a*b^2 + 2*a^3) + tan(c/2 + (d*x)/2)^5*(42*a*b^2 + 12*a^3) + tan(c/2 + (d
*x)/2)^7*(42*a*b^2 + 12*a^3) + tan(c/2 + (d*x)/2)^4*(48*a^2*b + 32*b^3) - (32*b^3)/3 + 32*a^2*b*tan(c/2 + (d*x
)/2)^6)/(d*(3*tan(c/2 + (d*x)/2)^4 - 3*tan(c/2 + (d*x)/2)^8 + tan(c/2 + (d*x)/2)^12 - 1))

________________________________________________________________________________________